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Abstract 

Goal reasoning is a process by which actors deliberate to 

dynamically select the goals they pursue, often in response 

to notable events. Building on previous work, we clarify and 

define the Goal Reasoning Problem, which incorporates a 

Goal Lifecycle with refinement strategies to transition goals 

in the lifecycle. We show how the Goal Lifecycle can model 

online planning, replanning, and plan repair as instantiations 

of Goal Reasoning while further allowing an actor to select 

its goals. The Goal Reasoning Problem can be solved 

through goal refinement, where constraints introduced by 

the refinement strategies shape the solutions for successive 

iterations. We have developed a prototype implementation, 

called the Situated Decision Process, which applies goal 

refinement to coordinate a team of autonomous vehicles to 

gather information soon after a natural disaster strikes. We 

outline several disaster relief scenarios that progressively 

require more sophisticated responses. Finally, we 

demonstrate the prototype Situated Decision Process on the 

simplest of our scenarios, showing the merits of applying 

goal refinement to disaster relief.  

1.  Introduction 

Robotic systems often commit to actions to achieve some 

goal. For example, a robot may commit to actions that 

attain some goal (e.g., to be at(location)) or to maintain 

some desirable condition (e.g., keep its battery charged). 

Robots also frequently act in partially-observable, dynamic 

environments with non-deterministic action outcomes. 

Consequently, robots may encounter notable events that 

impact their current commitments, examples of which 

include an exogenous event in the environment (e.g., wind 

disrupts vehicle navigation), a sensor reading identifies 

something of interest (e.g., a radio sensor reports the cell 

phone signal of an important person), or an executed action 

leads to an unanticipated outcome (e.g., a vehicle switches 

itself to a more urgent task, causing delay on the first task).  

 Robots must deliberate on their responses to notable 

events that impact their goals.  Appropriate responses 

might include continuing despite the event, adjusting 

expectations, repairing the current plan, replanning, 

selecting a different goal (i.e., regoaling), deferring the 

original goal in favor of another goal, or dropping the goal 

altogether. Responses could be designed a priori or learned 

by the robot, but ultimately, the robot deliberates about its 

commitment(s) to its goal(s). Goal Reasoning (GR) is the 

capacity of an actor to deliberate about its goals, which 

involves formulating, prioritizing, and adjusting its goals 

during execution.  GR actors are distinguished by their 

available responses, how they obtained them, and how they 

apply them.  The degree to which an actor performs GR 

determines its autonomy and ability to respond to change. 

 We have implemented a software library for Goal 

Reasoning that we apply to coordinating robotic vehicle 

teams for Foreign Disaster Relief (FDR) operations.  In the 

rest of the paper, we introduce FDR (§2) and our prototype 

system called the Situated Decision Process (SDP) (§3). 

We formally extend the GR Problem to online planning, 

demonstrating how it instantiates common systems (§4).  

We describe how to solve Goal Reasoning as iterative 

Goal Refinement (§5). We outline a set of FDR scenarios 

(§6) and detail how we applied our Goal Refinement 

library for the simplest of the FDR scenarios (§7). After a 

proof-of-concept demonstration (§8), we conclude and 

highlight ongoing and future work (§9). Related work is 

mentioned throughout the sections. The contributions of 

this paper over previous work (Roberts et al. 2014, 2015) 

include formally incorporating Goal Refinement into an 

online planning and execution framework (Nau 2007) and 

introducing an algorithm, fully outlining the set FDR 

scenarios, and providing richer detail of the 

implementation of Goal Refinement for FDR.  



2.  Motivating Application: Disaster Relief 

We study how to coordinate a team of robotic vehicles for 

Foreign Disaster Relief (FDR) operations. Between the 

time of a tragic disaster (e.g., Typhoon Yolanda) and the 

arrival of support operations, emergency response 

personnel need information concerning the whereabouts of 

survivors, the condition of infrastructure, and suggested 

ingress and evacuation routes. Current practice for 

gathering this information relies heavily on humans (e.g., 

first responders, pilots, drone operators). A team of 

autonomous vehicles with sensors can facilitate such 

information gathering tasks, freeing humans to perform 

more critical tasks in FDR operations (Navy 1996). It is 

not tenable to tele-operate every vehicle, so we must 

design a system that allows humans to be “on” the control 

loop of vehicles without issuing every vehicle command. 

FDR operations present unique challenges for domain 

modeling because each disaster is distinct. Any system that 

supports FDR operations must allow personnel to tailor 

vehicles’ tasks to the current situation. The system must 

also respond to notable events during execution.  

 An example information gathering task is shown in 

Figure 1 (top), which depicts a survey task for a team of 

fixed-wing aerial vehicles. Three vehicles (V1, V2, and 

V3) begin at the center base and must follow the nominal 

trajectories (green dashed lines) as closely as possible to 

maximize coverage of the areas (gray circles). The outer 

gray box outlines the vehicles’ allowed flight envelope.  

 Figure 1 (bottom) demonstrates notable events  for a 

single vehicle with a next goal of at(y). The vehicle should 

follow the expected path (dashed line from x to y) within 

the preferred bounds (the curved thin green lines); staying 

within these bounds gives the best solution.  The gray outer 

box is the proposed flight envelope outside of which the 

vehicle may negatively interact with other vehicles.  The 

actual flight path is given by the solid arc that starts at x 

and ends at y. The deviating path is due to the difference 

between the expected wind (dashed vectors) and actual 

wind (solid vectors). The dots correspond to notable events 

that could impact the vehicle’s goal commitment to be 

at(y). The first two points indicate where the vehicle 

violates the preferred trajectory while the last two points 

indicate the eminent and actual violation of the flight 

envelope.  

 Below each plot is a representation of the vehicle 

timeline(s), as described by Smith et al. (2000). The time 

window of the plan indicates that the plan should start 

executing no earlier than the earliest start time (i.e., the 

leftmost vertical bar) and finish by the latest finish time 

(the rightmost vertical bar). The large block in the middle 

indicates the expected duration.  

3.  The Situated Decision Process (SDP) 

We have implemented a prototype of a system, called the 

Situated Decision Process (SDP), which is designed to 

allow flexible assignment and control of a team of robots 

for FDR. Figure 2 displays an abstraction of the SDP 

components we discuss in this paper. The SDP is 

partitioned into three abstract layers, each composed of 

components that perform specific tasks. We will briefly 

describe the layers and some components.  A more 

complete exposition of the SDP and its components is 

provided by Roberts et al. (2015).  

 The UI Layer (colored white) manages interaction with 

the Operator. In this layer, the User Interface (UI) 

component collects operational goals and constraints from 

a human Operator (e.g., survey this region, look for a Very 

important Person (VIP) in this other region, and do not fly 

outside these bounds). The UI Layer conveys Operator 

feedback to the other components as needed and provides 

info to an Operator that the Operator may then decide to 

act on. 

 The Distributed Layer (colored black) manages the 

vehicles or vehicle simulation. Reactive robotic controllers 

often employ FSAs to determine a robot’s next action. 

Although they are fast to execute, hand-writing FSAs is 

Figure 1: Examples where goal reasoning  

may apply in a team survey task (top) and a track  

following task from point x to point y (bottom) with 

possible notable events highlighted by dots. 



error prone, tedious, and brittle. Yet, creating a single 

robotic controller for the many FDR missions and tasks is 

untenable because no controller could incorporate all the 

necessary steps. Recent advances apply a restricted variant 

of Linear Temporal Logic (LTL) called General 

Reactivity(1) to automatically synthesize FSAs in time 

cubic in the size of the final FSA (Bloem et al. 2012). This 

layer leverages LTLMop (Kress-Gazit et al. 2009) for LTL 

synthesis and physicomimetics (Apker et al. 2014) to 

implement vehicle control. 

 The Coordination Layer (colored gray) focuses on the 

mission and task abstractions for the vehicle teams. Even 

though LTL improves the consistency and speed of FSA 

generation, synthesis still becomes impractical for teams in 

dynamic environments. Hierarchical mission planning is 

naturally suited to limit the FSA size for teams of vehicles 

(e.g., by pre-allocating missions to vehicles or by assigning 

vehicles to teams). Assigning specific tasks to vehicles 

leads to compact, manageable LTL specifications, which 

allows us to construct vehicle FSAs with reasonable 

computational effort. We employ hierarchical 

decomposition (task) planning because it matches well 

with how humans view FDR operations (Navy 1996). In 

particular, we apply goal refinement to coordinate those 

vehicle missions in support of larger FDR operations. 

 The Coordination and Distributed Layers of the SDP are 

linked via a set of Coordination Variables, which integrate 

team mission goals with the vehicle controllers by 

providing abstraction predicates for vehicle commands, 

vehicle state (e.g., current behavior and health), and 

abstract vehicle sensor data.  

 The responses of the SDP must consider relevance to the 

operational context. Much is unknown or dramatically 

different from before to the disaster. The SDP must 

respond appropriately to the Operator dynamically 

(re)allocating resources or (re)prioritizing goals as new 

information becomes available. The SDP should respond 

by confirming the Operator’s intent and producing 

alternatives that best allocate resources to goals. 

4.  Goal Reasoning 

Deliberating about objectives – how to prioritize and attain 

(or maintain) them – is a ubiquitous activity of all 

intentional entities (i.e., actors). For the purposes of this 

section, we make the simplifying assumption that an 

objective is a goal, which is a set of states the actor desires 

to attain or maintain. Thangarajah et al. (2011) and 

Harland et al. (2014) show that all goals are either 

attainment goals or maintenance goals, but for further 

simplicity we will focus almost exclusively on attainment 

goals in this paper. Regardless of the source, achieving 

goals requires deliberation on the part of the actor (e.g., a 

plan must be created to achieve a goal). Although our 

motivating application is robotic team coordination, we 

generally refer to any system that interleaves deliberation 

with acting as an actor, following the terminology of 

Ghallab et al. (2014) and Ingrand & Ghallab (2014).  This 

section extends and clarifies early work on formalizing GR 

by Roberts et al. (2014). 

 To clarify the relationship of GR to planning, consider 

our adaptation of Nau’s (2007) model of online planning 

and execution in Figure 3, which shows how a Goal 

Reasoner complements online planning (in black) with 

Goal Reasoning (in gray). The world is modeled as a State 

Transition System Σ = (𝑆,  𝐴,  𝐸,  𝛿) where: 𝑆 =
{𝑠0, 𝑠1, 𝑠2, … } is a set of (discrete) states that represent facts 

in the world; 𝐴 = { 𝑎1, 𝑎2, … } are the actions controlled by 

the actor; 𝐸 = {𝑒1, 𝑒2, … } is a set of events not controlled 

by the actor; and, 𝛿 ∶ 𝑆 × (𝐴 ∪ 𝐸) →  2𝑆 is a state-

transition function. 𝑠𝑖𝑛𝑖𝑡 ∈ 𝑆 denotes the initial state of the 

actor. Assuming attainment goals, the actor seeks a set of 

transitions from 𝑠𝑖𝑛𝑖𝑡  to either a single goal state 𝑠𝑔 ∈ 𝑆 or 

Figure 3: Incorporating Nau’s (2007) Online 
Planning Model into a Goal Reasoning Loop. 

Figure 2: An abstract view of the Situated Decision 

Process (SDP). Nodes are colored by layer: UI (white), 

Coordination (Gray), and Vehicle (black). 



a set of goal states 𝑆𝑔 ⊂ 𝑆. Under classical assumptions, 

the planning problem can be stated: Given Σ = (S, A, δ), 

𝑠𝑖𝑛𝑖𝑡 , and a set of goal states 𝑆𝑔 find a sequence of actions 

(𝑎1, 𝑎2, … , 𝑎𝑘) that lead to a sequence of states 

(𝑠𝑖𝑛𝑖𝑡 , 𝑠1, 𝑠2, … , 𝑠𝑘) such that 𝑠1 ∈ 𝛿(𝑠𝑖𝑛𝑖𝑡 , 𝑎1), 𝑠2 ∈
𝛿(𝑠1, 𝑎2), … , 𝑠𝑘 ∈ 𝛿(𝑠𝑘−1, 𝑎𝑘), and 𝑆𝑔 ∈ 𝑠𝑘. However, it is 

rare that plans exist without some actor to execute them 

(cf. Pollack & Horty 1999). In online planning, execution 

status is provided to the planner as part of its deliberation. 

This allows the planner to adjust to dynamic events or new 

state in the environment.  The online planning model often 

assumes static, external goals. 

 Before we define Goal Reasoning, we must clarify the 

notion of “state” in the GR actor, which includes both its 

external and internal state and which requires expanding 

the state representation beyond S. To avoid confusion with 

the use of the word state as it is typically applied in 

planning systems, we will use 𝐿 to represent the language 

of GR. We say that the language of a GR actor is 𝐿 =
𝐿𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 ∪ 𝐿𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 , where 

 𝐿𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙  will often be a model of Σ but may be (or 

may become) a modified or incomplete version of Σ 

during execution or deliberation. An example of an 

external state for Figure 1 is at(y). 

 𝐿𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 represents the predicates and state required 

for the refinement strategies (e.g., the predicates 

𝑎𝑡𝑡𝑎𝑖𝑛(𝑔) or 𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛(𝑔), the state of all goals). 

An example of an internal state for Figure 1 is 

attain(at(y)). 

 We similarly extend and partition the set of goals into 

𝐿𝑔 = 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑔 ∪ 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑔 . In 𝐿𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙  the actor 

selects actions to achieve 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑔. In 𝐿𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  the actor 

selects actions to achieve 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑔. Internal goals may be 

conditioned on external goals or vice versa. For 

convenience, we write goals as 𝑔 and it should be clear 

from context whether we mean 𝑔 ∈ 2𝑆 or 𝑔 ∈ 2𝐿. If more 

context is needed we will use 𝑆𝑔 for goals that depend on Σ 

and 𝐿𝑔 for goals that depend on Ζ (defined next). 

 We model the GR actor as a State Transition 

System Ζ = (𝑀, 𝑅, 𝛿𝐺𝑅), where: 𝑀 is the goal memory that 

we detail in §4.1; 𝑅 is the set of refinement strategies 

introduced in §4.2; and 𝛿𝐺𝑅 ∶ 𝑀 × 𝑅 → 𝑀′ is a transition 

function we describe in §4.3.   

4.1 The Goal Memory (𝑀) 

The Goal Memory 𝑀 stores 𝑚 goals. Let 𝑔𝑖 be the actor’s 

𝑖𝑡ℎ goal for 0 ≤ 𝑖 ≤ 𝑚. Then 𝑁𝑔𝑖 =
〈𝑔𝑖 , 𝑝𝑎𝑟𝑒𝑛𝑡, 𝑠𝑢𝑏𝑔𝑜𝑎𝑙𝑠 , 𝐶, 𝑜, 𝑋, 𝑥, 𝑞〉 is a goal node where: 

𝑔𝑖 is the goal that is to be achieved (or maintained);  

𝑝𝑎𝑟𝑒𝑛𝑡 is the goal whose subgoals include 𝑔𝑖; 

𝑠𝑢𝑏𝑔𝑜𝑎𝑙𝑠 is a list containing any subgoals for 𝑔𝑖; 

𝐶 is the set of constraints on 𝑔𝑖. Constraints could be 

temporal (finish by a certain time), ordering (do x 

before y), maintenance (remain inside this area), 

resource (use a specific vehicle), or computational 

(only use so much CPU or memory).  

𝑜 is current lifecycle mode (see Figure 4 and §4.2).  

𝑋 is a set of expansions that will achieve the goal. The 

kind of expansions for a goal depend on its type. For 

goals from Σ, expansions might be a plan set Π. But 

other goals might expand into a goal network, a task 

network, a set parameters for flight control, etc. The 

expand strategy, described in §4.2, creates 𝑋.  

𝑥 ∈ 𝑋 is the currently selected expansion. This 

selection is performed with the commit strategy.  

𝑞 is a vector of one or more quality metrics. For 

example, these could include the priority of a goal, 

the inertia of a goal indicating a bias against 

changing its current mode because of prior 

commitments, the net value (e.g., cost, value, risk, 

reward) associated with achieving 𝑔𝑖, using the 

currently selected expansion 𝑥 ∈ 𝑋, the parallel 

execution time (i.e., the schedule makespan) or the 

number of plan steps. 

The constraints will be discussed in §5, where we detail 

how a GR actor refines goals. A partition 𝐶 = 𝐶𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 ∪
𝐶𝑎𝑑𝑑𝑒𝑑  separates constraints into those provided to the GR 

process independent of whatever invoked it (e.g., human 

operator, meta-reasoning process, coach) and those added 

during refinement. Top-level constraints can be pre-

encoded or based on drives (e.g., (Coddington et al. 2005; 

Young & Hawes 2012)). Hard constraints in 𝐶 must be 

satisfied at all times, while soft constraints should be 

satisfied if possible. 

 Our use of goal memory is distinct from its typical use in 

cognitive science, where goal memory is typically 

presented as a mental construct with representations and 

processes that are used to store and manage goal-related 

requirements of the task that a cognitive agent happened to 

be engaged in (e.g., Altmann & Trafton 1999; Anderson & 

Douglass 2001; Choi 2011). While issues such as 

interference level, strengthening, and priming constraints 

are key requirements to mimic human memory (Altmann 

& Trafton 2002), we ignore any such considerations 

because we are not concerned with the cognitive 

plausibility of our goal memory model.  

4.2 Refinement strategies (𝑅) 

The actor applies a set of refinement strategies 𝑅 to 

transition goal nodes in 𝑀. The Goal Lifecyle (Figure 4) 

captures the possible decision points of goals in the SDP. 

Decisions consist of applying a strategy (arcs in Figure 4) 

to transition a goal node 𝑁𝑔 among modes (rounded 

boxes). For convenience, we sometimes refer to the goal 

node 𝑁𝑔 as simply the goal 𝑔, though it should be clear 



that any strategies are functions that transition some 𝑁𝑔. In 

§6 we will detail strategies that we implemented for the 

FDR application that motivated this work.  

 Goal nodes in an active mode are those that have been 

formulated but not yet dropped. The formulate strategy 

determines when a new goal node is created. Vattam et al. 

(2013) describe goal formulation strategies. The drop 

strategy causes a goal node to be “forgotten” and can occur 

from any active mode; this strategy may store the node’s 

history for future deliberation. To select 𝑁𝑔 indicates 

intent and requires a formulated goal node. The expand 

strategy decomposes 𝑁𝑔 into a goal network (e.g., a tree of 

subgoal nodes) or creates a (possibly empty) set of 

expansions 𝑋. Expansion is akin to the “planning” step, but 

is renamed here to generalize it from specific planning 

approaches. The commit strategy chooses an expansion 

𝑥 ∈ 𝑋 for execution; a static strategy or domain-specific 

quality metrics may rank possible expansions for selection. 

The dispatch strategy slates 𝑥 for execution; it may further 

refine 𝑥 prior to execution (e.g., it may allocate resources 

or interleave 𝑥’s execution with other expansions). 

Goal nodes in executing modes (Figure 4, dashed lines) 

can be subject to transitions resulting from expected or 

unexpected state changes in Σ or Ζ. The monitor strategy 

checks progress for 𝑁𝑔 during execution. Execution 

updates, including notification that the executive has 

completed the tasks for the goal, arrive through the 

evaluate strategy. In a nominal execution, the information 

can be either resolved through a continue strategy after 

which the finish strategy marks the goal node as finished. 

 When notable events occur during execution, the 

evaluate strategy determines how they impact goal node 

execution and the resolve strategies define the possible 

responses. If the evaluation does not impact 𝑁𝑔, the actor 

can simply continue the execution. However, if the event 

impacts the current execution other strategies may apply. 

One obvious choice is to modify the world model (i.e., Σ or 

Ζ) using adjust, but adjusting its model does not resolve 

the mode of 𝑁𝑔 and further refinements are required. The 

repair strategy repairs the expansion 𝑥 so that it meets the 

new context; this is frequently called plan repair. If no 

repair is possible (or desired) then the re-expand strategy 

can reconsider a new plan in the revised situation for the 

same goal; this is frequently called replanning. The defer 

strategy postpones the goal, keeping the goal node selected 

but removing it from execution. Finally, formulate creates 

a revised goal 𝑔′; the actor then may drop the original goal 

𝑔 to pursue 𝑔′ or it could consider both goals in parallel. 

 We partition 𝑅 =  𝑅𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 ∪ 𝑅𝑎𝑑𝑑𝑒𝑑 ∪ 𝑅𝑙𝑒𝑎𝑟𝑛𝑒𝑑 to 

distinguish between representations that the actor was 

provided prior to the start of its lifetime (e.g., through 

design decisions), representations that were added to its 

model as a result of execution in an environment (e.g., a 

new object is sensed), and those it learned for itself (e.g., 

the actor adjusts its expectations for an action after 

experience).   

4.2 The Transition Function (𝛿𝐺𝑅) 

Not every strategy will apply to every goal or every 

situation. The transition function 𝛿𝐺𝑅 specifies the allowed 

transitions between modes. In a domain-independent 

fashion, 𝛿𝐺𝑅 is defined by the arcs in the lifecycle. 

However, a system or domain may modify (through 

composition, ablation, or additional constraints) the 

transitions for 𝑀. For example, in FDR operations, human 

approval is required before the SDP can commit to vehicle 

flight paths. In such a case, additional constraints on the 

commit strategy would ensure that Operator consent is 

obtained before a vehicle actually flies a trajectory. 

4.3 Instantiations of the Goal Reasoning Problem 

The Goal Reasoning Problem distinguishes systems by 

their design choices and, thus, facilitates their comparison. 

Figure 5 shows how different instantiations of the Goal 

Lifecycle can represent iterative plan repair (e.g., Chien et 

al. 2000), replanning (e.g., Yoon et al. 2007), and Goal-

Driven Autonomy (e.g., Klenk et al. 2013).  

Figure 4: The Goal Lifecycle (Roberts et al. 2014).  Strategies (arcs) denote possible decision points 

of an actor, while modes (rounded boxes) denote the status of a goal (set) in the goal memory. 



4.4 The Goal Reasoning Problem 

We can now define the Goal Reasoning Problem. Let 𝐿𝑖𝑛𝑖𝑡  

be the initial state of the actor, which includes 𝑠𝑖𝑛𝑖𝑡 . Then, 

the Goal Reasoning Problem can be stated:  

Given 𝛧 and 𝐿𝑖𝑛𝑖𝑡 , a GR actor examines its goal 

memory 𝑀𝑡 at time 𝑡 and chooses a strategy that 

maximizes its long-term rewards using 

∑ 𝛾𝑡𝑟𝑒𝑤𝑎𝑟𝑑𝑡
∞ 
𝑡 , where 𝛾𝑡 is a discount factor and 

𝑟𝑒𝑤𝑎𝑟𝑑𝑡: 𝑀𝑡 × 𝑅𝑡 → ℝ𝑡  yields the actor’s reward of 

applying one or more refinement strategies at time 𝑡.  

Roberts et al. (2014) showed how this problem could be 

modelled as an MDP or Reinforcement Learning problem. 

However, we apply neither of these in our implementation.  

4.5 Related Work 

The Goal Lifecycle bears close resemblance to that of 

Harland et al. (2014) and earlier work (Thangarajah et al., 

2010). They present a Goal Lifecycle for BDI agents, 

provide operational semantics for their lifecycle, and 

demonstrate the lifecycle on a Mars rover scenario. It 

remains future work to more fully characterize the overlap 

of their lifecycle with the Goal Lifecycle we define.  Work 

by Winikoff et al. (2010) has also linked Linear Temporal 

Logic to the expression of goals. Our work differs in that it 

focuses on teams of robots rather than single agents. 

Our approach of coordinating behaviors with constraint-

based planning is inspired by much of the work mentioned 

by Rajan, Py, and Barriero (2013) and Myers (1999).. Our 

Team Executive leverages the Executive Assistant of Berry 

et al. (2003).  

5. Goal Reasoning as Goal Refinement 

Solutions to the Goal Reasoning Problem can be solved 

through refinement search, a process we call goal 

refinement. Goal refinement builds on planning as 

refinement search (Kambhampati 1994, 1997; 

Kambhampati et al. 1995). Refinement planning employs a 

split and prune model of search, where plans are drawn 

from a candidate space 𝐾. Let a search node 𝑁 be a 

constraint set that implicitly represents a candidate set 

drawn from 𝐾. Refinement operators transform a node 𝑁𝑖 

at layer 𝑖 into 𝑘 children 〈𝑁𝑗1, 𝑁𝑗2,, … , 𝑁𝑗𝑘〉 at layer 𝑗 = 𝑖 +

1 by adding constraints that further restrict the candidate 

sets in the next layer. If the constraints are inconsistent 

then the candidate set is empty. Let 𝑁∅ represent an initial 

node whose candidate set equals 𝐾 and results from only 

the initial constraint set provided in the problem 

description (from the perspective of the search process, the 

refined constraints are empty, thus the subscript ∅). The 

RefinePlan algorithm recursively applies refinements to 

add constraints until a solution is found. A desirable 

property of refinements is that subsequent recursive calls 

result in smaller candidate subsets. Thus the constraints aid 

search by pruning the solution space, identifying 

inconsistent nodes, and providing backtracking points. 

Instantiations of RefinePlan correspond to variants of 

classical planning search algorithms.  Plan refinement 

equates different kinds of planning algorithms in plan-

space and state-space planning. Extensions incorporated 

other forms of planning and clarify issues in the Modal 

Truth Criterion (Kambhampati and Nau 1994). More 

recent formalisms such as angelic hierarchical plans 

(Marthi et al. 2008) and hierarchical goal networks 

(Shivashankar et al. 2013) can also be viewed as 

leveraging plan refinement. The focus on constraints in 

plan refinement allows a natural extension to the many 

integrated planning and scheduling systems that use 

constraints for temporal and resource reasoning. 

 Figure 6 shows a Goal Refinement algorithm. Goal 

Refinement begins with 𝑁∅ 
𝑔

, which consists of the 

candidate space of all possible executions achieving 𝑔. It 

then applies refinement strategies from the Goal Lifecycle 

(see Figure 4) to 𝑁𝑖
𝑔

 at layer 𝑖 into k children 

〈𝑁𝑗1
𝑔

, 𝑁𝑗2,
𝑔

, … , 𝑁𝑗𝑚
𝑔 〉 at layer 𝑗 = 𝑖 + 1 by modifying the goal 

node, which further restricts the candidate sets in the next 

layer. Figure 7 shows how the modes of a goal indicate 

successively smaller candidate sets towards eventual 

execution; transitions between these modes consist of 

adding, removing, or modifying constraints and states in 

𝑁𝑔. Each transition increases the level of commitment the 

actor has made to 𝑔 and increases the degree of refinement 

for 𝑁𝑔. If each refinement also reduces the candidate set of 

solutions, then search can be more efficient.  

Figure 5: Instantiations of the Goal Lifecycle that 

incorporate plan repair (top), replanning (middle), 

 and Goal-Driven Autonomy (bottom). 



6.  FDR Scenarios and GR Use Cases 

Military leaders in a FDR focus on five priorities (Navy, 

1996). Relief operations prevent or limit further loss of life 

or property damage; these operations focus on identifying 

or deploying first responders and taking actions to provide 

critical sustenance and first aid. Logistics operations 

establish and maintain key areas for equipment as well as 

plan for the distribution of materiel and personnel to the 

area; these focus on determining large, medium and small 

landing zones for air, sea, and ground vehicles as well as 

determining the capacity of existing infrastructure. Security 

operations locate key personnel and maintain safety for 

military and civilian assets; these operations involve 

locating the embassy and local government personnel, 

determining threats to operations, and providing 

transportation or evacuation assistance. Communications 

or information sharing operations establish and maintain 

an unclassified web-based network to allow foreign 

planners to share information with relief organizations; 

these involve assessing the existing communications 

network and possibly supplementing it as needed. 

Consequence management operations eliminate the 

negative impact of intentional or inadvertent release of 

hazardous materials as well as potential epidemics. 

 Two common threads in all five priorities are updated 

map data and reliable communications. A team of 

autonomous vehicles can update the map data concerning 

the roads and communications network, confirm the state 

of any potential hazardous material or threats to operations, 

and provide intelligence concerning the locations of 

survivors. We consulted with Navy reservists who perform 

FDR operations to develop three scenarios that showcase 

how the SDP can support FDR operations. Each scenario 

focuses on introducing notable events or error conditions to 

force the SDP to respond in a coordinated way by 

proposing operationally relevant solutions.  

 Though we only discuss the scenarios in this paper, we 

also developed use cases based on these scenarios to 

independently exercise every strategy of the Goal 

Lifecycle.  Each use case corresponds to the detection of 

and response to specific notable events by the Mission 

Manager. The use cases focus on using the resolve 

strategies of Goal Lifecycle (cf. Figure 4, dashed lines). 

 The vehicles in these scenarios carry three kinds of 

sensors. Electro Optical (EO) sensors that collect images. 

Radio Frequency (RF) sensors that can locate radio 

signals or perform radio communications. Another type of 

sensor detects chemical, biological, radiation, nuclear, 

and explosives (CBNRE). We can simulate CBNRE 

dangers using an RF signal at a particular frequency. 

Alternatively, we can simulate the existence of a hazard in 

a mixed real-virtual environment where the vehicles are 

flying in the real world but sensor reports are given by a 

software system.  

 The scenarios use three vehicle types (see Figure 8). 

Fixed wing Unmanned Aerial Vehicles (UAVs) are small 

air vehicles such as the Bat4, Insitu ScanEagle, Unicorn or 

Blackjack. A UAV’s operational time ranges from 2 to 20 

hours, it can travel at low air speeds at altitudes up to 5000 

feet, and it can carry sensor payloads up to 100kg. Micro 

Aerial Vehicles (MAVs) are small quadrotor or heptarotor 

UAVs such as the Acending Technologies Pelican. MAVs 

have operational times ranging from 3-15 minutes, travel 

close to the ground with limited range, and can carry very 

small EO or RF sensors. The extended scenario adds 

additional air and ground vehicles. Unmanned Ground 

Vehicles (UGVs) are small ground vehicles weighing 

about 60 pounds with a running time of 2-4 hours between 

charges. We use one to three iRobot Packbots PB1, PB2, 

and PB3. These vehicles can support significant payloads 

and computational power (depending on their battery life). 

Because MAVs are so range-limited, we also include in 

our scenarios Kangaroos, which are a combined vehicle 

type consisting of UGVs carrying a MAV.   

 These vehicles provide three atomic mission types: (1) 

Surveying a region with an EO sensor; (2) locate a Very 

Important Person (VIP) using an RF sensor; and (3) serve 

as a communications relay for a VIP. 

Figure 6: A Goal Refinement algorithm 

Figure 7: Modes define increasingly smaller 

candidate subsets for Goal Refinement  

Figure 8: UAV (left), UGV (middle), and MAV 

(right). See prose for descriptions. 



6.1 Integration Scenario 

This simple baseline scenario tests and demonstrates the 

major system components and their interactions; it 

involves a team of vehicles surveying the roads and finding 

a VIP in one of two Operator-selected regions. Three 

fixed-wing UAV vehicles fly over two pre-selected regions 

of interest to collect low resolution raster data in support of 

infrastructure assessment. When a UAV locates a 

survivor’s cell phone signal, it circles the signal location 

acting as a relay until receiving further instruction.  

 Figure 9 demonstrates a hypothetical start of the 

integration scenario, when a known map is provided to the 

Coordination Layer and discretized to allow for sensor data 

collection. The Operator can specify that particular regions 

as likely to contain specific people. For example, areas 

around an embassy and airport are likely to have VIPs to 

the FDR operations. In this example, one VIP is located at 

a building on an embassy compound. The VIP’s cell phone 

can be represented by any suitable radio signal emitter that 

the RF sensors on the vehicles will sense.  

 The Operator first identifies the specific vehicle/sensor 

platforms, which in this scenario includes three UAV 

vehicles, each with an EO and an RF sensor. The Operator 

then selects two regions and selects two missions (i.e., 

goals) for these regions: (1) VIPFound and (2) 

RoadsAssessed. Note that the Coordination Layer will 

eventually propose potential regions, as identified below in 

the extended scenario The Coordination Layer responds by 

highlighting possible trajectories over these regions, 

soliciting operator approval, and executing the data 

collection for those regions. UAV1, UAV2, and UAV3 

complete a survey of these two regions of interest.  

 UAV1 locates the VIP cell signal and responds by 

switching to a VIPCommsRelayed goal. The vehicle’s 

response is to begin hovering over the VIP signal. The UI 

response is to add a new avatar for the VIP (e.g., a red star) 

in the appropriate spot on the screen. The response in the 

Coordination Layer will be to formulate a new goal 

VIPCommsRelayed.  

The automated formulation of this goal is central to 

demonstrating how GR can aid the guidance of 

autonomous systems. One can imagine extending this to 

more elaborate scenarios where the system proposes new 

missions for the team as missions unfold.  

6.2 Recommendation Scenario 

This scenario extends the Integration Scenario so that the 

SDP additionally suggests the most likely regions for 

finding the VIP. In this scenario, the Operator can simply 

accept these regions rather than have to manually highlight 

them. This scenario reduces Operator entry load at the start 

of an FDR operation; the SDP instead refines goals to 

obtain the map from the world model, observe probable 

locations of the VIP (e.g., the embassy and the airport), and 

suggest regions to begin exploring.  To do this, the SDP 

analyzes known map data to create a region around an 

airport, a region around a building where the VIP was last 

spotted, and a region following the best road network 

between the airport and building.  

6.3 Extended Scenario 

Our most ambitious scenario involves all three vehicle 

types and exercises every strategy in the Goal Lifecycle. 

Figure 10 displays the main elements of the scenario, 

which takes place in a region the size of a few city blocks. 

Streets are named along the bottom and right side of the 

plot; some streets have a specific region (dotted boxes near 

the top and middle of the plot) where vehicles will need to 

survey during the scenario. 

This scenario extends the Integration scenario after the 

point where UAV1 has identified that the VIP signal is 

emitted near the Embassy Compound. UAV2 and UAV3 

return to base, and await further instruction. For the rest of 

the scenario, UAV1 circles above the embassy, tracking it 

and acting as a communications relay. At this point, the 

SDP is not aware of the Flood or Chlorine Spill because 

trees are blocking the flood from the UAV’s camera and 

Figure 9: Example airport and VIP regions. The base is 

located between the regions. Also shown are the 

trajectories (blue lines) for two vehicles (yellow dots). Figure 10: The Extended Scenario 



the UAV is flying too high to detect the spill. The UI has 

already notified the operator that a VIP was found and we 

assume the Operator “calls” the cell phone, decides to 

extract this person, and adds a new goal for the 

autonomous team to confirm safe ingress/egress routes 

followed by locating the VIP within the Embassy. At the 

start of the scenario, the best route that can be planned to 

extract the VIP from the Main Base is east along Palamino 

St., and then north on Aster Rd., which we denote as Route 

A. The Coordination Layer suggests allocating two 

Kangaroos to explore Route A, confirms this route via the 

UI Layer with the human, and dispatches the approved 

trajectories.  

During navigation of Route A, the Kangaroos detect a 

chlorine spill of unknown severity. The Mission Manager 

responds by suggesting a new allocation of three additional 

MAVs with CBNRE sensors to assess the extent of the 

spill. Alternatively, it could assign one Kangaroo to stop 

exploring Route A and help with this task. By now the 

Kangaroos should be at or near the VIP. However, because 

of the chlorine spill, a new route must be determined. The 

Mission Manager asks the Kangaroos to survey the Frisco 

Region (dashed lines on Frisco St.) and the flood is 

discovered, so Frisco St. is deemed impassable until further 

inquiry is done (this follow up goal should appear in the 

goal list of the Coordination Layer). The Mission Manager 

then commands the Kangaroos to survey the GrandRegion 

and determine Grand St. is passable. A safe route between 

the base and VIP is now established. The Kangaroos enter 

the embassy and locate the VIP. Because the FDR mission 

context includes locating survivors in buildings, the 

Mission Manager suggests the Kangaroos perform 

additional searching within the embassy to the Operator, 

who consents to this goal.  

7.  Goal Refinement for FDR 

In this section, we detail our implementation of Goal 

Refinement in the SDP. We encoded the domain 

knowledge as a hierarchical goal network (Shivashankar et 

al. 2013; Geier & Bercher 2012). The SDP’s goal network 

is currently hand-coded, but we are currently writing this 

model in the ANML language (Dvorák et al. 2014) and 

plan to integrate a full planning system in the SDP. The 

SDP will eventually guide vehicles in cooperation with its 

Operator, but in this paper we assume static mission goals 

and a fixed number of vehicles. We implemented the Goal 

Refinement model as a Java library and used this library to 

implement a goal network for the integration scenario.  In 

this section, we provide details regarding how we 

implemented the GR actor for the Mission Manager of the 

SDP.  We will frequently refer the goal nodes as “goals” to 

simplify the explanation, though it should be clear from 

context that these are actually the goal nodes of §4.1. 

 A GoalMemory class stores goal nodes in a priority 

queue sorted by the node priority. The priority of a node in 

the SDP depends on mode: formulated (10000), selected 

(20000), expanded (30000), committed (40000), 

dispatched (50000), evaluated (70000), and finished 

(90000). Higher priority ensures that goals further along in 

the lifecycle get more attention.  

 The Mission Manager is the GR actor in the SDP. It 

works with two GoalMemory objects. An 

InternalGoalMemory is used to initialize the system (e.g., 

load the domain) and store incoming information waiting 

to be processed. It stores any goals drawn from 𝐿𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  

(see §4). A DomainGoalMemory stores the goal nodes 

associated with 𝐿𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 . Figure 11 displays the goal 

network stored in the DomainGoalMemory for the scenario 

in Figure 9.  

 Goals (i.e., goal nodes) in the SDP exist within a goal 

ontology. Strategies in the SDP are written as a Strategy 

Pattern (Gamma et al. 1994) called by the Mission 

Manager. Every goal in the SDP implements the 

StrategyInterface; goals override methods in this interface 

to implement their specific strategies. Unless specifically 

stated as overridden, goals inherit the strategies of the 

goals they extend. This allows default strategies to be 

implemented high in the goal ontology, encouraging 

strategy reuse. 

 

StrategyInterface contains the following strategies: 

formulate, select, expand, commit, dispatch, evaluate, 

resolve, finish, and drop. This interface provides no 

default implementation for these strategies. 

 

BaseGoal (implements StrategyInterface) and defines 

the default strategies for all goals. It also implements the 

𝛿𝐺𝑅 transition function that controls which strategies can 

be applied; all strategies consult 𝛿𝐺𝑅 to ensure a 

transition is allowed. The formulate strategy creates the 

appropriate goal node and insert the node in the correct 

GoalMemory. The default behavior for most strategies is 

to transition to the next mode if the strategy is called. 

However, the expand and finish strategies perform 

additional steps. The expand strategy for a goal may 

require interaction with a process that provides the 

expansions (e.g., it may require a planner). So it has a 

hook that allows subclasses to specify how expansions 

can be generated if needed. If no expansion process is 

provided for a goal subclass, the default behavior is to 

allow expand to continue. The default finish strategy 

confirms that all subgoals are finished before allowing a 

parent to transition to finished. 

 



When the Mission Manager first loads, it places goals in 

each memory and adds a goal to load the domain. 

 

MaintainGoalMemory (extends BaseGoal) is the goal 

that ensures goals continue to get processed in each 

GoalMemory. This goal contains a queue of modified 

goals and notifies the MissionManager of changes. 

When a goal is modified, the MaintainGoalMemory goal 

tries to apply the next applicable strategy.  

 

AchieveDomainLoaded (extends BaseGoal) is a goal 

that fills the root goal in the DomainGoalMemory. It 

currently places the root goal in the 

DomainGoalMemory and finishes. However, if there 

were database calls or files to read for the domain to 

load, the expand strategy would be the correct strategy 

to implement this functionality. 

 

Non-primitive domain goals are expanded by instantiating 

a sub-goal tree for the goal. The SDP commits to and 

dispatches the only expansion available for these goals, 

since this is a small example. These non-primitive goals 

remain in a dispatched (i.e., in-progress) state until their 

subgoals finish. The remaining goals are domain specific 

and relate to Figure 11.   

 

OperationalGoal (extends BaseGoal) is base type for 

non-primitive goals that match to the operational 

priorities of FDR operations.  Strategies for these goals 

are the same as the BaseGoal.  

 

Operational subgoals eventually decompose into 

AchieveTeamMission goals. 

 

AchieveTeamMission (extends BaseGoal) modifies two 

strategies from the default given by BaseGoal. The 

expand strategy connects a special trajectory generator 

to create expansions. The trajectory generator examines 

many factors to create a suitable trajectory. However, the 

details of this are not known to the goal. The trajectory 

generator implements an interface that returns an 

expansion that is attached to the goal node after calling 

expand. The commit strategy requires Operator 

approval before it can send vehicles on a trajectory. So 

this strategy confirms that approval has been granted.  

 

 Expanding an AchieveTeamMission goal results in a 

specific VehicleMission goal, which includes details 

regarding a proposed allocation of a vehicle to a specific 

trajectory (cf. the lawnmower flight paths of Figures 1 and 

9). Once the VehicleMission details are approved – either 

automatically or by the Operator – the Mission Manager 

commits and dispatches the proposed expansion of the 

VehicleMission for execution.  

 

VehicleMission (extends BaseGoal) is a goal that allows 

the Mission Manager to track the progress toward 

completion of a mission. It modifies only one strategy 

from the default behavior. The dispatch strategy sets up 

a special listener for vehicle state that triggers the goal to 

move to call the evaluate strategy when a vehicle update 

is received. Because the default behavior of every 

strategy is to attempt to move to the next mode, the 

evaluate strategy will move to finished when the 

progress of a vehicle is above a specific threshold that 

indicates the task is complete. 

 

The Coordination Manager and Team Executive then begin 

sending vehicle commands. The VehicleMission goal 

remains dispatched until new information (e.g., a progress 

update) causes it to become finished or need some other 

resolve strategy.  

 The Mission Manager has triggers to monitor the 

dispatched goals so that it will notice if the goal is stalled 

or completed by the executive. The Mission Manager uses 

a repair strategy on the original vehicle allocation to retask 

a vehicle for a stalled VehicleMission,  

8. Demonstration 

We demonstrate the SDP on the Integration Scenario (see 

§6.1). Figure 9 shows an airport region (upper left) and, 3-

5 km away from the airport, a VIP region (lower middle) 

that is centered on a particular building near the suspected 

location of the VIP. The VIP emits a radio signal (e.g., cell 

phone signal). Two fixed-wing air vehicles (in yellow) are 

tasked with assessing the two regions and finding the VIP. 

They carry Electro Optical and Radio Frequency sensors 

that activate when the target is within their sensor radius.  

 The integration scenario demonstrates the SDP’s key 

capabilities, namely that: (1) the SDP can create new goals 

responding to an open world (e.g., it collectively responds 

to the VIP being found); (2) a vehicle can make decisions 

autonomously (e.g., a vehicle may begin relaying the VIP 

once found); (3) the SDP responds to vehicles making 

Figure 11: Goal decomposition during an SDP run 



autonomous decisions (e.g., it notes the vehicle relaying 

instead of surveying when the VIP is found); and (4) the 

SDP can retask a vehicle to complete a mission (e.g., it 

retasks stalled missions to idle vehicles). 

 To generate 30 scenarios based on Figure 1 we select 30 

random airports from OpenStreetMaps data for North 

Carolina (Geofabrik 2014) and then select buildings within 

3-5 kilometers of the airport. Buffer regions of 300 meters 

around the airport and the building serve as the airport and 

VIP regions, respectively. Each run completes when (1) 

both regions are completely surveyed and the VIP is found 

or (2) the simulation reaches 35,000 steps. Each step is 

approximately one second of real time simulation. We use 

the MASON simulator (Luke et al. 2005) to run the 

scenario. 

 At the start of the scenario, one vehicle is assigned to 

assess the Aiport Region, denoted by AirportVehicle, and 

the other vehicle is assigned to the VIP Region, denoted 

VIP Vehicle. Vehicles return to the base when their fuel is 

sufficiently low. Vehicle behavior depends on whether the 

vehicles can retask themselves to relay when the VIP is 

found (denoted +Relay) or they do not relay (–Relay). 

Regardless of whether a vehicle begins relaying, the 

Mission Manager should always create a new “Relay VIP” 

goal when the VIP is found. The Mission Manager 

behavior depends on whether it is allowed to retask a 

vehicle (+Retask) or not (–Retask).  

Condition 1: Find VIP (–Relay –Retask) provides a 

baseline. In it the vehicles detect the VIP and a new goal to 

relay the VIP appears when the VIP is found. Getting the 

SDP to do something meaningful with the “Relay VIP” 

goal is our next condition. 

 Condition 2: Relay VIP (+Relay –Retask) 

demonstrates that a vehicle can retask itself with a new 

goal by automatically relaying the VIP once found. The 

retasking is embedded in the Vehicle Controller (see 

Figure 5, line 15). However, this change of behaviors 

needs to be shown in the goal network, where the goal 

“Mission: RelayVIP” should appear after the VIP is found. 

However, nothing is done with the new goal and VIP 

Vehicle does not complete the entire survey of the VIP 

region because it switches its own task to relaying.  

 Condition 3: Relay and Retask (+Relay +Retask). To 

address the problem of the VIP region remaining 

unfinished, the Coordination Layer is allowed to retask the 

Airport Vehicle so it finishes the VIP Region survey after 

completing its area first.  

 When we run the simulation on the three conditions, we 

observe exactly the expected results. In every case, a new 

goal is observed in the Mission Manager after the VIP is 

found. In the Relay VIP condition, the VIP Vehicle begins 

relaying as expected, leaving the VIP Region unfinshed. 

When the Mission Manager is allowed to retask vehicles, 

we observe that all three missions complete.  

 This demonstration exercises most Goal Lifecycle 

strategies (i.e., all except adjust and re-expand).  It should 

be clear that the nominal strategies (cf. Figure 4, solid arcs) 

are executed.  However, it may be less clear that the 

demonstration also applies most of the resolve strategies 

(Figure 4, dashed lines).  During the notable events of the 

scenario, the evaluate step notifies the Mission Manager of 

the need to deliberate.  When a vehicle returns to base to 

recharge, the Mission Manager applies continue because 

recharging is an expected contingency behavior of 

surveying.  When relaying is enabled (+Relay) and a 

vehicle switches to relaying, the Mission Manager must 

apply formulate(𝒈′) where 𝑔′ is the RelayVIP goal.  Then 

it applies defer(Survey) in preference to the RelayVIP 

goal.  This leaves the Survey goal in a selected (i.e., 

unfinished) mode.  With retasking enabled (+Retask), the 

Mission Manager applies repair(Survey) to reassign the 

goal to the AirportVehicle.  Running the ablated versions 

(i.e., –Relay or –Retask) is the same thing as limiting the 

strategies available to the Mission Manager. 

9. Summary and Future Work 

We detailed our implementation of a prototype system, 

called the Situated Decision Process (SDP), which uses a 

Goal Refinement library we have constructed to coordinate 

teams of vehicles running LTL-synthesized FSAs in their 

vehicle controllers. The central contributions of this paper 

are clarifying the relationship of GR with Nau’s (2007) 

model of online planning, more clearly defining the Goal 

Reasoning Problem and Goal Refinement, outlining a set 

of use cases for Foreign Disaster Relief (FDR), detailing 

the implementation of Goal Refinement for FDR in our 

prototype system and demonstrating that the SDP can 

respond to notable events during execution.  

 Future work will consist of further automating portions 

of the SDP, extending the demonstration to work with 

large teams of robotic vehicles, and enriching the domain 

model. For example, we plan to extend the domain model 

to fully encode temporal and resource concerns similar to 

the TREX system (Rajan, Py, and Barriero 2013). We plan 

to test the SDP against the more challenging scenarios with 

richer sensor models and higher-fidelity simulations. 

Ultimately, we plan to run the SDP on actual vehicles and 

perform user studies on its effectiveness in helping an 

Operator coordinate a team of vehicles in Disaster Relief. 
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